Fluorescence resonance energy transfer in doubly-quantum dot labeled IgG system.
نویسندگان
چکیده
The mouse immunoglobulin G (mouse IgG) as a kind of bio-molecule was labeled with two different luminescent colloidal semiconductor quantum dots (QDs), green-emitting CdTe quantum dots and red-emitting CdTe quantum dots in this work. As a result of the fluorescence resonance energy transfer (FRET) between the two different sizes nanoparticles with mouse IgG as the binding bridge, a significant enhancement of the emission of the red-emitting CdTe quantum dots and the corresponding quenching of the emission of green-emitting CdTe quantum dots were observed. The relationship between the concentration of the mouse immunoglobulin G and the fluorescence intensity ratio (I(a)/I(d)) of acceptors and donors was studied also. Under optimal conditions, the calibration graph is linear over the range of 0.1-20.0mg/L mouse IgG.
منابع مشابه
Ultrasensitive detection and quantification of acidic disaccharides using capillary electrophoresis and quantum dot-based fluorescence resonance energy transfer.
Rapid and highly sensitive detection of the carbohydrate components of glycoconjugates is critical for advancing glycobiology. Fluorescence (or Förster) resonance energy transfer (FRET) is commonly used in detection of DNA, in protein structural biology, and in protease assays but is less frequently applied to glycan analysis due to difficulties in inserting two fluorescent tags into small glyc...
متن کاملFRET-Based Quantum Dot Immunoassay for Rapid and Sensitive Detection of Aspergillus amstelodami
In this study, a fluorescence resonance energy transfer (FRET)-based quantum dot (QD) immunoassay for detection and identification of Aspergillus amstelodami was developed. Biosensors were formed by conjugating QDs to IgG antibodies and incubating with quencher-labeled analytes; QD energy was transferred to the quencher species through FRET, resulting in diminished fluorescence from the QD dono...
متن کاملA self-assembled quantum dot probe for detecting beta-lactamase activity.
This communication describes a quantum dot probe that can be activated by a reporter enzyme, beta-lactamase. Our design is based on the principle of fluorescence resonance energy transfer (FRET). A biotinylated beta-lactamase substrate was labeled with a carbocyanine dye, Cy5, and immobilized on the surface of quantum dots through the binding of biotin to streptavidin pre-coated on the quantum ...
متن کاملA quantum-dot based protein module for in vivo monitoring of protease activity through fluorescence resonance energy transfer.
Here, we present a new generation of nanoscale probes for in vivo monitoring of protease activity by fluorescence resonance energy transfer (FRET). The approach is based on a genetically programmable protein module carrying a fluorescently labeled, protease-specific sequence that can self-assemble onto quantum dots. The protein module was used for real-time detection of human immunodeficiency v...
متن کاملNucleic Acid Sandwich Hybridization Assay with Quantum Dot-Induced Fluorescence Resonance Energy Transfer for Pathogen Detection
This paper reports a nucleic acid sandwich hybridization assay with a quantum dot (QD)-induced fluorescence resonance energy transfer (FRET) reporter system. Two label-free hemagglutinin H5 sequences (60-mer DNA and 630-nt cDNA fragment) of avian influenza viruses were used as the targets in this work. Two oligonucleotides (16 mers and 18 mers) that specifically recognize two separate but neigh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Talanta
دوره 67 5 شماره
صفحات -
تاریخ انتشار 2005